REVISION OF THE COMPOSITE SHECIES LIMA BASSI TENISON WOODS (MOLLUSCA, BIVALVIA)

by M. F. Buonaiuro*

Abstract

Summary Buonaluto, M. F. (1977) Revision of the composite species Lima bassi Tennison Woods Mollusca, Bivalyia). Trans. R. Soc, S. Aus', 101(3), 75-83, 31 May, 1977. The composite species Lima bassi Tenison Woods is revised. Among the forms referred to Lima bassi (ranging from Late Eocene to Pliocene), four species are recognized: the Late Eocene L. Mastinensis sp. nov., the Early Mioceno L. bassi s. str., the Middle Miocene (Batesfordian) L. morganensls sp. nov, and the Late Pliocene L. elianae, A neotype and paraneotypes of Lima bassi from the type-focality are established.

Introduction

During the present revision of the Eocene Mollusca from the type section of the Aldingan stage, different species revealed themselves as composite: Lima bassi Tenison Woods is one of them. Pasi authors grouped at least three distinct forms in it: the Longfordian Lima bassi. the Late Eocene L, maslinensis sp. nov., the Batesfordian L. morganensis sp, nov., and a fourth Pliocene form L. elianae from Dry Creek Sands.

Apart from the revision of Lima bassi and the description of three new taxa, it is necessary to establish a neotype and paraneotypes of L, bassi, Since Ludbrook (1967) revised the Johnston and Wood's types, it is common knowledge that many of these types were lost during the first hate of this century. The holotype of Lima bassi is one of them.

Although authors quote several localities, the only localities considered here are those from which the specimens examined were obtained, Definitions of the parameters here measured (after Cox, Nuttall \& Trueman, in Moore 1969).

HI -height of valve distance between two planes. parallel to cardinal axis, perpendicular to commissure plane, and tangent to umbonal and ventral ends of valve.
Lt - length of valve as distance between 2 planes perpendicular to cardinal axis and tangent to anterior and posterior ends of valve.
Lpa-length of posterior auricle, as distance between two planes tangent to beak and to
posterior end of auricle and normal to cardinal axis.
Laa-length of anterior auricle, analogously defined as the ahove parameters.
Lea-length of cardinal area as distance between two planes tangent to auricles' ends and perpendicular to cardinal axis.
Hr -height. of resilifer as distance between two parallel planes, parallel to cardinal axis, and tangent to its upper and lower ends.
Lr - length of resilifer, as distance between two planes, perpendicular to cardinal axis, and tangent to its anterior and posterior ends.
Ts -thickness of valve, as distance between two parallel planes: former tangent to commissure line, and latter tangent to outer valve surface.
Hea-height of cardinal area, as distance between two planes parallel to cardinal axis and tangent to its upper and lower ends.
Tca-distance between two parallel planes: former tangent to beak; latter tangent to commissure line.

Standard ratios were calculated. The ratio $\mathrm{Tca} / \mathrm{Ht}=\operatorname{Tg} \hat{\alpha}$ represents the tangent of the angle $\hat{\alpha}$ between the geometric generating curve as defined by Raup (1966) after Stasek (1966) where the biological generating curve coincides with the growing edge of the valve, and the geometric generating curve is the intersection of the valve with a plane containing the coiling axis and tangent to the ventral end of the biological curve. The angle \hat{A} determines the degree of maximum opening breadth between valves.

[^0]

FIGS 1-7

Collections. SAM: South Australian MuseumGSSA: Gcological Survey of South Australia,

Systematic descriptions

CLASS: BIVALVIA Linחé, 1758
SUBCLASS: PTERIOMORPHIA Beurlen, 1944
ORDER: PTERIOIDA Newcll, 1965
SUBORDER: PTERIINA Newell, 1965
SUPERFAMLY: LIMACEA Kafincsque. 1815
FAMILY: LIMIDAE Ratinesque, 1815
GENUS: Lima Bruguière, 1797
SUBGENUS: Lima s.str.
Lima (Lima) bassi Tenison Woods, 1877
FIGS 1-2, 11-13, 17-24
1877 Lima bassil Tenison Woods, p. 112. 1886 Lima bassi-Tate, p. 117 (pars). 1955 Lima brassi-1 udbrook, p. 35 (pars).
Neotype: RV senile, figs 1-2 (SAM 18343/1).
Paraneotypes: 6 RV, 2 LV aduits, figs 17-24, (SAM P18343/2-8).
Stratigraphic location: Frestane Cove Sandstone (Longfordian).
Type locality: Table Cape, Tasmania, Bass Bash (Freestone Cove).
Description: Shell rather thin, subtrigonal, very incquilateral, litte inflated, hügher than long: umbones with acute small prosogyrate beuks. Margins: antero- and postero-dorsal straight. the Jatter longet; anterior very long, concave: posterior very long, conchve near the umbo, convex and very elliptical to the ventral; ventral very elliptical. Margin connections: antero-dorsal-anterior and posterodorsal-posterior very angulaf; anterior/ and posteriot-ventral imperceptible. Auricles triangular, small, the anterior redueed, Longitudinal shell section regularly but weakly convex. Regions: posterior and dorsoventral convex and gently declivous; anterior convex and gently declivous to the dorsum, subconcave and vertical at the margin Region connections: imperceptible: the two different parts of the anterior by a sharp rim.

Cardinal area narrow, triangular; resilifer broad, triangular, coneave. Hinge taxodont with twa small longitudinal tecth on the auricles. Interior radially ribbed; pallial line imperceptible: monomyarian with posterior adductor scar faint, rather high and marginal, 8 -shaped, broader in the upper part. Commissure region crenulated except near the hinge.
Ormament: Prominent scaly radial ribs with equal U-shaped interspaces. Between the interspaces concentric flat microcostae; in juvenileadult the anteriors and the posteriors convergent to the dorsoventral where they overlap with a shagreen pattern; in adult regularly concentric microcostae; in seniles very fine growth lines only,

Anterior marginal region concentric costae and weak radial ribs.

Auricles: anterior strong concentric costac: posterior with strong radial ribs.
Dimensions (mm): (see Table 1).
Ohservations: Tate commented on differences among specimens from Table Cape, Morgan, Aldinga and Adelaide. On the basis of concentric microornaments he distinguished from L. bassi s- str. a var. A for the specimens from Morgan, and a var. B for the specimens from Aldinga and Adclaide Bore. These varieties are here raised to species as L. morganertsis and L, maslinersis respectively.

Parancotype 2 displays in neanic-juvenile stages concentric microornament similar to that of L. maslinensis, abruptly passing to the regular concentric microornament. In adult senilc stages secondary radial microriblets can develop in some interspaces. The other paraneotypes display variability in $\mathrm{Ht} / \mathrm{Lt}$ ratio and in morphology (Figs 17-22), In reference to the type-focality, Johnston (1877) quoted a Lima squamosa in the "Crassatella Beds", Further. Johnston listed L. bassi $=$ L. squamosa Lamarck. Banks (ín Gill 1962) revised and redefined Johnston's "Cratssatella Beds" as the Fresstone Cove Sandstone, attributing to it a Late Oligocene age. Quilty (1966) and Ludbrook (1967, 1973) gave evidence of a Longfordian age for Table Cape Group of which the Freestone Cove Sandstone is part, on the trasis of both benthonic and plantonic fora-

Figs 1.2, Litha bassi, neotype, Freestone Cove; Longfordian: (1) dorsal view: (2) interior view (xl-15). Figs 3-4. L. morganensis sp. nov., Batesfordian: (3) holotype (GSSA M 3138), near Morgan, dorsal view ($\times 2.2$); (4) parstype (SAM T982 E). Murray Cliffs, interior view ($x 2.55$). Figs J-7, 6. maslinensis sp. nov., Adelakde (Kent Town) Bore, Abliagan; (5) holotype, dorsal view ($\times 2,2$): (6) bolotype, interior view (x2.2). Pakttype (SAM P 18344). Maslin Bay; (7) dorsal view (x2.2)

TABLE 1
Dimensions (in mm) and ratios of Lima bassi

Specirruns	Ht	Li	Lpa	1.3]	1 Hr	Lt	Ts	Tea		Lea	Hca	a	
Neplyoe	53.07	45.85	7.60	4.80	\% 3.80	4.30	755	1.50		12.40	290	$1^{\circ} 37{ }^{\prime}$	
Paraneotype 1	23.50	17.35	2.75	2.45	5 210	1.90	3.10	0.75		5.15	1.45	$1^{\circ} 49^{\circ}$	
Paraneotype 2	27.15	1935	4.60	2.90	92.20	1.70	4.55	1.35		7.50	1.95	$2^{\circ} 50{ }^{\prime}$	
Paransatype 3	38.27	32.90	5.25	3.70	7) 3.50	3.00	7.35	1.20		8.95	2.60	$1^{\circ} 47^{\prime}$	
Paranoutype 4	28.80	22.95	3.75	2.45	5205	2,45	490	0.85		6.70	1.64	$1^{\circ} 41^{\prime}$	
			Laa/Lca		Lpa/L.ca	Lr/ Hr	Ts/Ll	Tgê $=$					
Specimens	L1/ HL	Lata/1pa			Ts/Ht				H1 Hea/Lea				
Neotype	. 8659	. 6316	3879			. 6129	1.1316	. 1734	. 1500		. 02830		. 2339
Parancotype !	. 8234	. 8910	4785		. 5371	. 9048	. 1602	. 1319		. 03191		. 2832	
Paraneotype ?	-	. 630104	3867		, 6133	1,2941	-	-1676		,04972		. 2600	
Paraneotype 3	. 8601	. 7048	. 4134		. 5366	.8571	.2234	. 1921		. 03137		. 2905	
Patabeotype 4	7969	. 6533	36557		. 5597	1.1951	2135	.1701		. 02951		. 2388	

minifera. Hutton (1887) synonymized L, bassi with L. rolorata Hutton, 1873 (Boreham 1965) because "Mr Woods' name stands as mine is incorrect". Later authors such as Suter (1914) accepted Hutton's name. Probably after Hutton, Tate (1899) quoted L, hassi occurring also in New Zealand. Finlay (1924) quoted L. colorata as one of the New Zealand species corresponding to L. bassi. However, an Awamoan senile specimen of L. colorata from Otago, in the Department of Geology and Mineralogy at the University of Adelaide, displays specific differences as trape-zoidal-shaped broad radial ribs with broader interspaces, as only fine growth lines in juvenile stages and also radial oblique, very fine striations in adult and senile stages,

Lima maslinensis sp, nov.
FIGS 5-10
1886 Lima bassi val., B Tate, p. 117, pl. 8, fig. la-c.
Derivation of Name: From Mastin Bay, locality of the lowest recorded occurrence of this form. Holorype: T983D, holotype of var. B, figs 5-6, Paratypes: T983 A-C, E,
Type Locality; Old E \& W. Dept Kent Town Bore, Hd Adelaidc, sect, NE Parklands No. 13. Stratigraphic Range: Aldingan (Late Eocene) (Ludbrook 1973).
Collections: SAM T983 A-E, P18344.
Matertal: 26 specimens ($8 \mathrm{LV}, 4 \mathrm{RV}, 14 \mathrm{VV}$) badly preserved, 5 specimens from Tate's Collection (2RV, 3LV).

Description: As L. bassi. Differences: stronger teeth, the anteriors longer, the posterior triangular.
Ornument: Primary radial scaly costae with rectangular section and with equal U-shaped interspaces. In the interspaces, fine flat transverse microcostae in the anterior and posterior regions, convergent to the dorso-umbonal; in the dorsoventral region the microcostae overlap with a shagreen pattern. Anterior marginal region with numerous fainter radial spiny ribs.

Auricles: anterior with concentric costae; posterior with concentric costae and faint spiny radials.
Dimensions (rom):
T983 D-Ht, 37.5; Lt, 25.45; Lpa, 4.70; Laa, 3.55; Hr, 2.30; Lr, 2.90; Ts, 5.65; Tca, 1.45; Hca, 2,70; Lca, 8.25.
Ratios: T983 D-Lt/Ht, .6876; Laa/Lpa, .7553; Laa/Lca, 4303; Lpa/Lca, .5697; Lr/ $\mathrm{Hr}, 1.2609$; $\mathrm{Ts} / \mathrm{Lt}, .2220 ; \mathrm{Ts} / \mathrm{Ht}_{1}$. 1507; Tg 2 $=\mathrm{Tca} / \mathrm{Ht}, .03866 ; \mathrm{Hca} /$ Lca,, 3273 ,
Observations. Tate initially separated this form from Lima bassi Tenison Woods as var. B. Teeth, microcostal pattern, posterior auricle and anterior marginal ornaments distinguish this form at specific level from L. bassi.

Tate's holotype of the variety is here chosen is the holotype of L. maslinensis, although from it is the subsurface and broken into two neat pieces, it is the only well preserved specimen.
Distribution. St Vincent Basin; Adelaide Plains Sub-Basin, Kent Town Bore; Willunga SubBasin. Maslin Bay,

Figs 8-10. L. maslitiensis sp, nov:; (8) anteriar ventral prnament (x13); (9) posterior ventral ornaments ($\mathrm{x} \mid 2$) : (10) dorsoventral ortaments (x12), Figs 11-13, Lima bassi, paraneolype 8, Freestone Cove, sromment: (11) anterior ventral (x13): (12) dorsoventral (x13); (13) posterior ven(1al ($\times 12$). Figs 14-16. Lima morganensts sp. nov. holotype, ornaments: (14) dorsoventral $\langle\times 10) ;(15)$ juvenile dorsoventral and posterior auricle (x9.5); (16) anterior ventral (x9.5).

FIGS 17-24

Lima morganensis sp. noy.

FIGS 3-4, 14-16
1886 Limat hassii var, A Tate, p. 117, pl 5, fig, 8a-b. 71897 Lima bassil Harris, p. 310 (non Teuison Woods.
Derivation of Name: From Morgan, the town nearby, after which Morgan Limestone was named.
Holotype: GSSA M3138, fig. 3.
Paratypen. T982 A-L, fig. 4.
Stratigraphio Localion: Cadell Marls Lens (Batesfordian) (Ludbrook 1973).
Iype-Locality: 6.4 km S of Morgan, type section of Cadell Mart, section G. Hd Cadell (Ludbrook 1961).
Material- 11 specimens from Tate's callection ($7 \mathrm{RV}, 4 \mathrm{LV}$) : 1 RV from GSSA Collection (Holotype).

Descriplion. As L. bassi.

Omament: Primary radial subtriangular scaly ribs with equal V-shapod interspaces; long very mctined chevton-shaped microriblets covering ribs and interspaces, with their head on the ribs orientated to the umbo. Posterior auricle with more marked concentric costae and weak spiny radial ribs. Anterior auricle with concentric costae and weak beaded radial ribs.
Dimensions (mm) :
T982 A-Ht, $32.20 ;$ Lt, 26.00; Lpa, 5.55; Laa, $3.85 ; \mathrm{Hr}_{7}-\mathrm{Lr},-\mathrm{Ts}, 4.70$; Tca, 1.35; Lca, 9,40; Hca, 2.10; ㄱ, 1² 24 '. T982 E-Ht, 20.50; LL, 15.25; Lpa, 3.60; Laa, 2.70; Hr, 2.20; Lt, $1.50 ; \mathrm{Ts}_{\mathrm{s}}$-: Tca, -; Lca, 6.30; Hea, 1.95; 4, —

Ratios:

T982 A-Lt/Ht, .8074; Lata/Lpa, .6937: Laa/ Lca, $4085 ; \mathrm{Lpa} / \mathrm{Lca}, 5904 ; \mathrm{Lr} / \mathrm{Hr}-; \mathrm{Ts} / \mathrm{Lt}$, .I808; Ts/Ht, .1460; tg 0 Tca/Ht, 04192; Hea/Lea, 2234. T982 E-Lt/Ht, .7439; Laa/ Lpa, .7500; Lad/Lca, .4286; Lpa/Lca, ,5714; $\mathrm{Lr} / \mathrm{Hr}, .68 \mathrm{I} 8 ; \mathrm{Ts} / \mathrm{Lt},-; \mathrm{Ts} / \mathrm{Ht}-\mathrm{tg} \mathbf{2}=$ $\mathrm{Tca} / \mathrm{Ht}, \mathrm{Hea} / \mathrm{Lca}, 3095$.
Ohservalions. Tate initially distinguished this form as a variety of Lima bassi Tenison Woods. Shape of the ribs and interspaces ornaments of posterior auricle, anterior marginal region and interspaces and radial costae separate this form from L- barsi.

The specimen T982 A is the holotype of Tate's var. A. The original illustration of Fig, 8 a is inverted. The specimen from GSSA Collection was chosen as holotype because of its good topographic and stratigraphic location.

Lima elianae spi nov.

FIGS 28-31
1955 Lima bassi-Ludbrook, p. 36 (pars),
Derivation of Name: After Datt. Eliana Garbarino (Mrs Buonaiuto), the author's mother-
Holotype: GSSA M 2384, figs 25-26.
Paratypes: GSSA M 158, figs 28-31; SAM P19210, Fig. 27.
Iype-Locality: Observation Bare D, hd Port Adelaide, St Kilda, $81.38-83.5 \mathrm{~m}$ depth.
Type-Formalion; Dry Creek Sands, Yatalan,
Material: The bolotype (LV) and an adult (SAM P 19210) with damaged margins and a specimen (GSSA M 159) with the ventral part broken.
Description. As L, bassi,
Ormament: Primary radial subquadrangular costae with equal U-shaped interspaces; in neanic stage prominent concentric microcostae. In the adult stage short chevron-shaped concentric microcostae with the head to the ventral in the interspaces; the V-aniorocostae can be substituted by narrow belts of normal concentrie microcostae, meanwhile in the senile stage they are entirely substituted by fine growth rugse and fine radial oblique microplicae
Observations. The specimen of L. elianate from Abattoirs Bore is that quoted by Woods (1931) as Austrolima bassi. The form relerred by Tare (1890) to L. bassi from Dry Creek Bore is at present unlocated bat almost cestainly helongs to L. elianae,

Unfortunately the only three specimens itvaitable are both from bores and both damaged. The senile from Observation Bore is chosen as holotype because it is the only one with a sure stratigraphic location.
L, elianae, L. basst, and L. maslinensis are all characterized by subquadrangular radial costae and chevron-shaped concentric microcostae. They might represent a lineage, but the material available is inadequate to be cerlain.

Figs 17-24, Lima bassi, paraneotypes, Freestone Cove; (17) Paraneqlype 3 ($x 1,15$); (18) Paraneotype 7 (x1.7); (19) Parancotype $1(\times 2.4) ;(20)$ Paraneotype 6 (22.1); (21) Paraneotype 5 $(x 1.15) ; 122)$ Paraneotype $\left.4\left(x^{2}, 2\right) ;(2\}\right)$ Paraneotype $8(x 2,2) ;(24)$ Paraneotype 2 ($\times 2.4$).

FIGS 25-31
Figs 25-26. Lima elianae sp. nov., holotype: (GSSA M 2384), Observation Bore D, Late Pliocene, views (x1.0); (25) dorsal; (26) interior. Fig. 27. Lima elianae sp. nov. paratype (SAM P 19210), Abbattoirs Bore, Late Pliocene, dorsal vjew (x1.4). Figs 28-31. Lima elianae sp. nov., paratype (GSSA M 159), Munno Para Bore, Late Pliocene; (28) dorsal view (x1.95). Ornament; (29) dorsal juvenile transitional to adult; (30) dorsal, adult; (31) anterior, adult.

Other Localities: Adelaide Plains Sub-Basin. Abattoirs Bore; bore hd. Munno Para, Sect. 4251, 72.5-78.0 m depth.
Stratigraphic Range: Yatalan (Late Pliocene),

Acknowledgments

I am very grateful to the Director of Mines, South Australia, and to the Director of the

South Australian Muscum, Adelaide, for the loan of the material here studied; to Dr N. H. Ludbrook for continued advice; and to Dr B. McGowran for reading the manuscript.

The work was carried out in the Department of Geology and Mineralogy, University of Adelaide, during tenure of a University Research Grant.

References

Banks, M. R. (1962) Cainozoic, Marine Succession. In Spry, A. \& Banks, M. R. The Geology of Tasmania. J. Geal. Soc. Aust., 9(2), 233 236.

Boreham, A. U. E. (1965) A revision of F. W. Hutton's Pelecypod species described in the Catalogue of Tertiary Mollusca and Echino-
dermata (1873), N.Z. Geol. Surv. Paleont. Bull., 37, 1-84.
Dennant, J. \& Kitson, A. E. (1903) Catalogue of the described species of fossils (except Bryozoa and Foraminifera) in the Cainozoic fauna of Victoria, South Australia and Tasmania. Rec. Geol. Surv. Vict., 1(2), 89-147.

Fini.ay, H. J. (1924) List of recorded relationships between Australia and New Zealand Mollusca. Aust. Assoc. Adi. Sci., Rep. 16th meet., 332-343.
Harris, G. F. (1897) Catalogue of Tertiary Mollusca in the Department of Geology, British Museum (Natural History). Pt. 1, The Australasian Tertiary Mollusca. (London.)
Hurton, F. W. (1887) Notes on some Australian Tertiary fossils. Proc. Lim. Soc. N.S.W., 2nd ser.. 1, 481-482.
Johnston, R. M. (1877) Further notes on the Tertiary Marine Beds of Table Cape. Pap. Proc. Rep. R. Soc. Tasm. (1876), 79-90.
Ludbrook, N. H. (1967) Tertiary Molluscan types from Table Cape in the Tasmanian Museum, Hobart. Ibid, 101, 65-69.
Ludarook, N. H. (1961) Stratigraphy of the Murray Basin in South Australia. Bull. Geol. Surv. S. Aust., 36, 1-96.
Ludbrook, N. H. (1955) The Molluscan fauna of the Pliocene strata underlying the Adelaide Plains. Pt. II. Pelecypoda. Trans. R. Soc. S. Aust., 78, 18-87.
Moore, \ddot{R}. C. (1969) Treatise on Invertebrate Paleontology. Pt. N. Mollusca, Bivalvia. (Univ. Kansas \& Geol. Soc. Am.)

Quily, P. G. (1966) The age of Tasmanian Marine Tertiary rocks. Aust. J. Sci., 29 (5), 143-144.
Raup, D. M. (1966) Geometric analysis of shell coiling. General problems. J. Paleont., 40(5), 1178-1190.
Stasek, C. R. (1963) Geometrical form and gnomonic growth in the bivalved Mollusca. J. Morph. 112(3), 215-229.
Suter, H. (1914) Revision of the Tertiary Mollusca of New Zealand, based on type material. Pt 1. N.Z. Geol. Surv. Palaeont. Bull. 2.
Tate, K. (1886) The lamellibranchs of the Older Tertiary of Australia. Pt 1. Trans. R. Soc. S. Aust., 8. 96-158.
Tate, R (1899) A revision of the Older Tertiary Mollusca of Australia. Pt I. Ibid, 249-277.
Tate, R. (1890) On the discovery of Marine deposits of Pliocene age in Australia. Ibid, 23(2), 172-180.
Woods, J. E. Tenison (1877) Notes on the fossils referred to in the foregoing paper. Pap. Proc: Rep. R. Soc. Tasm. (1876), 91-116.
Woods, N. H. (1931) Pelecypoda from the Abattoirs Bore, including twelve new species. Trans. R. Soc. S. Aust., 55, 147-151.

[^0]: *Department of Geology and Mineralogy, University of Adelaide, North Tce, Adelaide, S, Aust, 5000 .

